Publication

Why Going Towards Plastic and Flexible Sensors?

Abstract

The emergence of the fields of wearable devices, e-textiles and smart packaging brings new requirements on electronics and sensing systems. One or a combination of the following properties can be desired for their proper operation and to meet the functionalities required by the application in order to improve market penetration. Very low-cost, thin, large area, lightweight, flexibility, conformability, transparency, stretchability are some of the characteristics that can be offered by making sensors on polymeric foil. We propose printing processes for the fabrication of these devices to mainly reduce their production cost and to improve the environmental friendliness of their manufacturing. In this communication, we discuss the benefits, drawbacks, potential, and challenges of printing sensors on plastic substrates illustrated with some examples of technical developments performed in our laboratory. We present environmental sensors fabricated on plastic foil and the associated flexible encapsulation method at the foil level. Integration of printed sensing devices on smart RFID tags is also discussed. By using thin polymeric substrates, very small bending radius of curvature can be achieved. Besides the challenges linked to the large area printing of the sensing devices on flexible foil and the reliability of these devices under mechanical cycling, new developments are required on the interconnectivity of these devices with other electronics components to achieve efficient system integration. (C) 2011 Published by Elsevier Ltd.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Printed electronics
Printed electronics is a set of printing methods used to create electrical devices on various substrates. Printing typically uses common printing equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography, and inkjet. By electronic-industry standards, these are low-cost processes. Electrically functional electronic or optical inks are deposited on the substrate, creating active or passive devices, such as thin film transistors; capacitors; coils; resistors.
Plastic
Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to its widespread use. Plastics typically are made through human industrial systems.
Flexible electronics
Flexible electronics, also known as flex circuits, is a technology for assembling electronic circuits by mounting electronic devices on flexible plastic substrates, such as polyimide, PEEK or transparent conductive polyester film. Additionally, flex circuits can be screen printed silver circuits on polyester. Flexible electronic assemblies may be manufactured using identical components used for rigid printed circuit boards, allowing the board to conform to a desired shape, or to flex during its use.
Show more
Related publications (46)

MXene Inks for High-Throughput Printing of Electronics

Jakob Heier, René Uwe Schneider, Sina Abdolhosseinzadeh, Mohammad Jafarpour

MXene inks are promising alternatives for conventional conductive inks in printing electronics. However, the formulation of MXene inks is challenging due to the physicochemical properties of the few solvents in which MXenes can be dispersed. Furthermore, c ...
Wiley2024

A hybrid Selective Laser Sintering based process for the additive manufacturing of architectured composites

Erwan Philippe Guenier

Additive Manufacturing also commonly referred as 3D printing has been given a lot of interest lately. Market is growing exponentially and the aim for obtaining more complex and ready-to use parts is emerging. All the 3D printing processes consist in buildi ...
EPFL2023

Light-Based Printing of Leachable Salt Molds for Facile Shaping of Complex Structures

Cyril Dénéréaz

3D printing is a powerful manufacturing technology for shaping materials into complex structures. While the palette of printable materials continues to expand, the rheological and chemical requisites for printing are not always easy to fulfill. Here, a uni ...
WILEY-V C H VERLAG GMBH2022
Show more
Related MOOCs (11)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.