Publication

Compressor Tree Synthesis on Commercial High-Performance FPGAs

Abstract

Compressor trees are a class of circuits that generalizes multioperand addition and the partial product reduction trees of parallel multipliers using carry-save arithmetic. Compressor trees naturally occur in many DSP applications, such as FIR filters, and, in the more general case, their use can be maximized through the application of high-level transformations to arithmetically intensive data flow graphs. Due to the presence of carry-chains, it has long been thought that trees of 2- or 3-input carry-propagate adders are more efficient than compressor trees for FPGA synthesis; however, this is not the case. This article presents a heuristic for FPGA synthesis of compressor trees that outperforms adder trees and exploits carry-chains when possible. The experimental results show that, on average, the use of compressor trees can reduce critical path delay by 33% and 45% respectively, compared to adder trees synthesized on the Xilinx Virtex-5 and Altera Stratix III FPGAs.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.