Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations
Related publications (75)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Statistical (machine-learning, ML) models are more and more often used in computational chemistry as a substitute to more expensive ab initio and parametrizable methods. While the ML algorithms are capable of learning physical laws implicitly from data, ad ...
A long-standing goal of science is to accurately simulate large molecular systems using quantum mechanics. The poor scaling of current quantum chemistry algorithms on classical computers, however, imposes an effective limit of about a few dozen atoms on tr ...
Data-driven approaches have been applied to reduce the cost of accurate computational studies on materials, by using only a small number of expensive reference electronic structure calculations for a representative subset of the materials space, and using ...
Molecular simulations allow to investigate the behaviour of materials at the atomistic level, shedding light on phenomena that cannot be directly observed in experiments. Accurate results can be obtained with ab initio methods, while simulations of large-s ...
We present an efficient method to compute diffusion coefficients of multiparticle systems with strong interactions directly from the geometry and topology of the potential energy field of the migrating particles. The approach is tested on Li-ion diffusion ...
Computational chemistry aims to simulate reactions and molecular properties at the atomic scale, advancing the design of novel compounds and materials with economic, environmental, and societal implications. However, the field relies on approximate quantum ...
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments sp ...
We highlight with first-principles molecular dynamics the persistence of intrinsic < 111 > Ti off-centerings for BaTiO3 in its cubic paraelectric phase. Intriguingly, these are inconsistent with the Pm (3) over barm space group often used to atomistically ...
A DFT+U-type corrective functional is derived from first principles to enforce the flat plane condition on localized subspaces, thus dispensing with the need for an ad hoc derivation from the Hubbard model. Small, molecular test systems at the dissociated ...
Non-covalent bonding patterns are commonly harvested as a design principle in the field of catalysis, supramolecular chemistry, and functional materials to name a few. Yet, their computational description generally neglects finite temperature and environme ...