Radiation damage in ferritic/martensitic steels for fusion reactors: a simulation point of view
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
New linear plasma devices are currently being constructed or planned in the Trilateral Euregio Cluster (TEC) to meet the challenges with respect to plasma surface interactions in DEMO and ITER: i) MAGNUM-PSI (FOM), a high particle and power flux device wit ...
Several types of reduced activation ferritic/martensitic (RAFM) steel have been developed over the past 30 years in China, Europe, India, Japan, Russia and the USA for application in ITER test blanket modules (TBMs) and future fusion DEMO and power reactor ...
Tungsten materials are candidates for plasma-facing components for the International Thermonuclear Experimental Reactor and the DEMOnstration power plant because of their superior thermophysical properties. Because these materials are not common structural ...
For a large number of non-oxideceramic/metal as well as for non-oxide particulate reinforced composite/metal tribocouples,oxidative wear is reported to play a major role in the overall damage and material removal process.The designing of new materials with ...
Ferritic/martensitic (FM) steels, F82H and Optimax-A, were irradiated up to 11.3 dpa/1175 appm He in Target-3 of the Swiss Spallation Neutron Source (SINQ). To investigate helium-induced hardening effect, micro-hardness and microstructure of the irradiated ...
This PhD Thesis work was aimed at investigating the potentiality of tungsten-base materials as structural materials for the future thermonuclear fusion reactors in attempting to develop reduced activation tungsten-base materials with high strength and suff ...
A W-2Y material has been produced by powder metallurgy techniques including mechanical alloying of W and Y elemental powders in an argon atmosphere, followed by hot isostatic pressing of the milled powder at 1320 degrees C under a pressure of 200 MPa for 2 ...
The HiRadMat (High-Radiation to Materials) facility will allow testing of accelerator components, in particular those of the Large Hadron Collider (LHC) at CERN, under the impact of high-intensity pulsed beams. To reach this intensity range, the beam will ...
Ferritic steels are the main candidates for the structural components of future fusion reactors. Because of the complexity of their structure, most of the simulation works are focused on the base phase of these materials such as alpha-Fe or Fe-Cr alloy. In ...
R&D activities on fusion reactor materials in Switzerland focus on (1) the development of advanced metallic materials for structural applications in plasma-facing (first wall, divertor) and breeding blanket components of the future fusion power reactors, i ...