Enhanced change detection using nonlinear feature extraction
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Kernel methods are fundamental tools in machine learning that allow detection of non-linear dependencies between data without explicitly constructing feature vectors in high dimensional spaces. A major disadvantage of kernel methods is their poor scalabili ...
Recently, several theories including the replica method made predictions for the generalization error of Kernel Ridge Regression. In some regimes, they predict that the method has a 'spectral bias': decomposing the true function f* on the eigenbasis of the ...
We have analyzed structural motifs in the Deem database of hypothetical zeolites to investigate whether the structural diversity found in this database can be well-represented by classical descriptors, such as distances, angles, and ring sizes, or whether ...
At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in the infinite-width limit [12, 9], thus connecting them to kernel methods. We prove that the evolution of an ANN during training can also be described by a kernel: ...
Random Fourier features (RFFs) provide a promising way for kernel learning in a spectral case. Current RFFs-based kernel learning methods usually work in a two-stage way. In the first-stage process, learn-ing an optimal feature map is often formulated as a ...
Principal component analysis (PCA) finds the best linear representation of data and is an indispensable tool in many learning and inference tasks. Classically, principal components of a dataset are interpreted as the directions that preserve most of its "e ...
Writing a correct operating system kernel is notoriously hard. Kernel code requires manual memory management and type-unsafe code and must efficiently handle complex, asynchronous events. In addition, increasing CPU core counts further complicate kernel de ...
Background: For the functional control of prosthetic hand, it is insufficient to obtain only the motion pattern information. As far as practicality is concerned, the control of the prosthetic hand force is indispensable. The application value of prosthetic ...
Starting from a strong Lattice-Free Maximum Mutual Information (LF-MMI) baseline system, we explore different autoencoder configurations to enhance Mel-Frequency Cepstral Coefficients (MFCC) features. Autoencoders are expected to generate new MFCC features ...
This paper introduces Memory-limited Online Subspace Estimation Scheme (MOSES) for both estimating the principal components of streaming data and reducing its dimension. More specifically, in various applications such as sensor networks, the data vectors a ...