Publication

The medial axis of the union of inner Voronoi balls in the plane

Mark Pauly
2007
Conference paper
Abstract

Consider a dense sampling S of the smooth boundary of a planar shape O, i.e., an open subset of R-2. We show that the medial axis of the union of Voronoi balls centered at Voronoi vertices inside O has a particularly simple structure: it is the union of all Voronoi vertices inside O and the Voronoi edges connecting them. Therefore, the medial axis of the union of these inner balls can be computed more efficiently and robustly than for a general union of balls. Our algorithm requires only the computation of a single Delaunay triangulation which is of complexity O(n log n), whereas the general algorithm needs two Delaunay triangulations and a power diagram of quadratic complexity in the number of inner Voronoi balls. Also, our solution yields robust results even without using exact arithmetic, because it avoids the computation of the power diagram of the inner Voronoi balls whose configuration is highly degenerate. (C) 2012 Elsevier B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.