Applications architectureIn information systems, applications architecture or application architecture is one of several architecture domains that form the pillars of an enterprise architecture (EA). An applications architecture describes the behavior of applications used in a business, focused on how they interact with each other and with users. It is focused on the data consumed and produced by applications rather than their internal structure.
Protein structureProtein structure is the three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers - specifically polypeptides - formed from sequences of amino acids, which are the monomers of the polymer. A single amino acid monomer may also be called a residue, which indicates a repeating unit of a polymer. Proteins form by amino acids undergoing condensation reactions, in which the amino acids lose one water molecule per reaction in order to attach to one another with a peptide bond.
Windows domainA Windows domain is a form of a computer network in which all user accounts, computers, printers and other security principals, are registered with a central database located on one or more clusters of central computers known as domain controllers. Authentication takes place on domain controllers. Each person who uses computers within a domain receives a unique user account that can then be assigned access to resources within the domain. Starting with Windows Server 2000, Active Directory is the Windows component in charge of maintaining that central database.
Sign functionIn mathematics, the sign function or signum function (from signum, Latin for "sign") is a function that returns the sign of a real number. In mathematical notation the sign function is often represented as . The signum function of a real number is a piecewise function which is defined as follows: Any real number can be expressed as the product of its absolute value and its sign function: It follows that whenever is not equal to 0 we have Similarly, for any real number , We can also ascertain that: The signum function is the derivative of the absolute value function, up to (but not including) the indeterminacy at zero.