Partitioned Solution of Geometrical Multiscale Problems for the Cardiovascular System
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider the numerical solution of second order Partial Differential Equations (PDEs) on lower dimensional manifolds, specifically on surfaces in three dimensional spaces. For the spatial approximation, we consider Isogeometric Analysis which facilitate ...
Finite elements methods (FEMs) with numerical integration play a central role in numerical homogenization methods for partial differential equations with multiple scales, as the effective data in a homogenization problem can only be recovered from a micros ...
We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by B-spli ...
We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by B-spli ...
Isogeometric Analysis (IGA) is a computational methodology for the numerical approximation of Partial Differential Equations (PDEs). IGA is based on the isogeometric concept, for which the same basis functions, usually Non-Uniform Rational B-Splines (NURBS ...
This paper is devoted to the mathematical modelling and numerical simulation of basic mechanisms that drive multicontinuum systems in two- and three-dimensional porous media. We state a general mathematical model within the framework of mixture theory, cap ...
Numerical methods for partial differential equations with multiple scales that combine numerical homogenization methods with reduced order modeling techniques are discussed. These numerical methods can be applied to a variety of problems including multisca ...
The modeling of an incompressible fluid through a porous medium requires to deal with two systems of partial differential equations (PDEs) for the two types of media (fluid and porous). A possible way to couple theses two equations is by using the penaliza ...
This paper presents a new method for the solution of multiscale stochastic differential equations at the diffusive time scale. In contrast to averaging-based methods, e.g., the heterogeneous multiscale method (HMM) or the equation-free method, which rely o ...
We propose an Isogeometric approach for smoothing on surfaces, namely estimating a function starting from noisy and discrete measurements. More precisely, we aim at estimating functions lying on a surface represented by NURBS, which are geometrical represe ...