Magnetic hourglass dispersion and its relation to high-temperature superconductivity in iron-tuned Fe
Related publications (43)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Many exotic metallic systems have a resistivity that varies linearly with temperature, and the physics behind this is thought to be connected to high-temperature superconductivity in the cuprates and iron pnictides1,2,3,4,5,6,7,8,9. Although this phenomeno ...
Since the discovery of high-temperature superconductivity in cuprates, proposals have been made that pairing may be local, in particular in underdoped samples. Here, we briefly review evidence for local pairs from our experiments on thin films of La (2-x) ...
High-temperature superconductivity in cuprates emerges as one out of many electronic phases when doping the antiferromagnetic Mott insulator La2CuO4 away from half lling. The description of the superconducting phase is therefore complicated by intertwined ...
Among the widely studied superconducting iron-pnictide compounds belonging to the Ln1111 family (with Ln a lanthanide), a systematic investigation of the crossover region between the superconducting and the antifer-romagnetic phase for the Ln = Nd case has ...
State-of-the-art magnets of fusion devices, which are based on low temperature superconductors (LTS), have almost reached their technological limits in terms of generated magnetic fields. Further progress can be made using novel high temperature supercondu ...
The majority of interactions in solids strongly depend on the interatomic distances. The application of pressure changes the lattice parameters and modifies the electronic and the phononic energy spectra of a material avoiding some of the undesirable effec ...
We demonstrate that images of flux vortices in a superconductor taken with a transmission electron microscope can be used to measure the penetration depth and coherence length in all directions at the same temperature and magnetic field. This is particular ...
This paper consists of three parts. In part I, we microscopically derive Ginzburg–Landau (GL) theory from BCS theory for translation-invariant systems in which multiple types of superconductivity may coexist. Our motivation are unconventional superconducto ...
Metals containing cerium exhibit a diverse range of fascinating phenomena including heavy fermion behavior, quantum criticality, and novel states of matter such as unconventional superconductivity. The cubic system CeIn3 has attracted significant attention ...
As a result of extremely high upper critical fields Bc2, high temperature superconductors (HTSs) have the potential to be used as high field insert coils in magnet systems where the background field is provided by low temperature superconductors (LTS). How ...