Shared electrophysiology mechanisms of body ownership and motor imagery
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this work we present a multichannel EEG decomposition model based on an adaptive topographic time-frequency approximation technique. It is an extension of the Matching Pur- suit algorithm and called Dependency Multichannel Matching Pursuit (DMMP). It ta ...
Brain activity recorded non-invasively is sufficient to control a mobile robot if advanced robotics is used in combination with asynchronous EEG analysis and machine learning techniques. Until now brain-actuated control has mainly relied on implanted elect ...
By directly analyzing brain activity, Brain-Computer Interfaces (BCIs) allow for communication that does not rely on any muscular control and therefore constitute a possible communication channel for the completely paralyzed. Typically, the user performs d ...
An active area of neuroimaging research involves examining functional relationships between spatially remote brain regions. When determining whether two brain regions exhibit significant correlation due to true functional connectivity, one must account for ...
We compare the use of two Markovian models, HMMs and IOHMMs, to discriminate between three mental tasks for brain computer interface systems using an asynchronous protocol. We show that IOHMMs outperform HMMs but that, probably due to the lack of any prior ...
We present an application of Independent Component Analysis (ICA) to the discrimination of mental tasks for EEG-based Brain Computer Interface systems. ICA is most commonly used with EEG for artifact identification with little work on the use of ICA for di ...
Brain-computer interfaces (BCIs) aim to provide a new channel of communication by enabling the subject to control an external systems by using purely mental commands. One method of doing this without invasive surgical procedures is by measuring the electri ...
Brain activity recorded non-invasively is sufficient to control a moblie robot if advanced robotics is used in combination with asynchronous EEG analysis and machine learning techniques. Until now brain-actuated control has mainly relied on implanted elect ...
Institute of Electrical and Electronics Engineers2004
We present an application of Independent Component Analysis (ICA) to the discrimination of mental tasks for EEG-based Brain Computer Interface systems. ICA is most commonly used with EEG for artifact identification with little work on the use of ICA for di ...
In recent years a number of non-invasive Brain-Computer Interfaces have been developed that determine the intent of a subject by analysing the Electroencephalograph(EEG) signals up to frequencies of 40Hz. The use of high frequency EEG features have recentl ...