Numerical methods for linear least squaresNumerical methods for linear least squares entails the numerical analysis of linear least squares problems. A general approach to the least squares problem can be described as follows. Suppose that we can find an n by m matrix S such that XS is an orthogonal projection onto the image of X. Then a solution to our minimization problem is given by simply because is exactly a sought for orthogonal projection of onto an image of X (see the picture below and note that as explained in the next section the image of X is just a subspace generated by column vectors of X).
Heart failureHeart failure (HF), also known as congestive heart failure (CHF), is a syndrome, a group of signs and symptoms, caused by an impairment of the heart's blood pumping function. Symptoms typically include shortness of breath, excessive fatigue, and leg swelling. The shortness of breath may occur with exertion or while lying down, and may wake people up during the night. Chest pain, including angina, is not usually caused by heart failure, but may occur if the heart failure was caused by a heart attack.
Dual polyhedronIn geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron. Duality preserves the symmetries of a polyhedron.
Nowhere continuous functionIn mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain. If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some such that for every we can find a point such that and . Therefore, no matter how close we get to any fixed point, there are even closer points at which the function takes not-nearby values.
Smooth infinitesimal analysisSmooth infinitesimal analysis is a modern reformulation of the calculus in terms of infinitesimals. Based on the ideas of F. W. Lawvere and employing the methods of , it views all functions as being continuous and incapable of being expressed in terms of discrete entities. As a theory, it is a subset of synthetic differential geometry. The nilsquare or nilpotent infinitesimals are numbers ε where ε2 = 0 is true, but ε = 0 need not be true at the same time.
Flexible polyhedronIn geometry, a flexible polyhedron is a polyhedral surface without any boundary edges, whose shape can be continuously changed while keeping the shapes of all of its faces unchanged. The Cauchy rigidity theorem shows that in dimension 3 such a polyhedron cannot be convex (this is also true in higher dimensions). The first examples of flexible polyhedra, now called Bricard octahedra, were discovered by . They are self-intersecting surfaces isometric to an octahedron.
Schönhardt polyhedronIn geometry, the Schönhardt polyhedron is the simplest non-convex polyhedron that cannot be triangulated into tetrahedra without adding new vertices. It is named after German mathematician Erich Schönhardt, who described it in 1928. The same polyhedra have also been studied in connection with Cauchy's rigidity theorem as an example where polyhedra with two different shapes have faces of the same shapes. One way of constructing the Schönhardt polyhedron starts with a triangular prism, with two parallel equilateral triangles as its faces.
Császár polyhedronIn geometry, the Császár polyhedron (ˈt͡ʃaːsaːr) is a nonconvex toroidal polyhedron with 14 triangular faces. This polyhedron has no diagonals; every pair of vertices is connected by an edge. The seven vertices and 21 edges of the Császár polyhedron form an embedding of the complete graph K_7 onto a topological torus. Of the 35 possible triangles from vertices of the polyhedron, only 14 are faces.
Bisection methodIn mathematics, the bisection method is a root-finding method that applies to any continuous function for which one knows two values with opposite signs. The method consists of repeatedly bisecting the interval defined by these values and then selecting the subinterval in which the function changes sign, and therefore must contain a root. It is a very simple and robust method, but it is also relatively slow. Because of this, it is often used to obtain a rough approximation to a solution which is then used as a starting point for more rapidly converging methods.
Szilassi polyhedronIn geometry, the Szilassi polyhedron is a nonconvex polyhedron, topologically a torus, with seven hexagonal faces. The 14 vertices and 21 edges of the Szilassi polyhedron form an embedding of the Heawood graph onto the surface of a torus. Each face of this polyhedron shares an edge with each other face. As a result, it requires seven colours to colour all adjacent faces. This example shows that, on surfaces topologically equivalent to a torus, some subdivisions require seven colors, providing the lower bound for the seven colour theorem.