Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
How does the brain process and memorize information? We all know that the neuron (also known as nerve cell) is the processing unit in the brain. But how do neurons work together in networks? The connectivity structure of neural networks plays an important ...
The reduction of aversive emotions by a conspecific’s presence—called social buffering—is a universal phenomenon in the mammalian world and a powerful form of human social emotion regulation. Animal and human studies on neural pathways underlying social bu ...
Coarse-graining microscopic models of biological neural networks to obtain mesoscopic models of neural activities is an essential step towards multi-scale models of the brain. Here, we extend a recent theory for mesoscopic population dynamics with static s ...
While most models of randomly connected neural networks assume single-neuron models with simple dynamics, neurons in the brain exhibit complex intrinsic dynamics over multiple timescales. We analyze how the dynamical properties of single neurons and recurr ...
The interpretation of neuronal spike train recordings often relies on abstract statistical models that allow for principled parameter estimation and model selection but provide only limited insights into underlying microcircuits. In contrast, mechanistic m ...
Identifying the structure and dynamics of synaptic interactions between neurons is the first step to understanding neural network dynamics. The presence of synaptic connections is traditionally inferred through the use of targeted stimulation and paired re ...
Decoding visual cognition from non-invasive measurements of brain activity has shown valuable applications. Vision-based Brain-Computer Interfaces (BCI) systems extend from spellers to database search and spatial navigation. Despite the high performance of ...
Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model- ...
To appreciate how neural circuits in the brain control behaviors, we must identify how the neurons comprising the circuit are connected. Neuronal connectivity is difficult to determine experimentally, whereas neuronal activity can often be readily measured ...
Neuromodulators, such as acetylcholine (ACh), control information processing in neural microcircuits by regulating neuronal and synaptic physiology. Computational models and simulations enable predictions on the potential role of ACh in reconfiguring netwo ...