Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Several problems in the implementations of control systems, signal-processing systems, and scientific computing systems reduce to compiling a polynomial expression over the reals into an imperative program using fixed-point arithmetic. Fixed-point arithmetic only approximates real values, and its operators do not have the fundamental properties of real arithmetic, such as associativity. Consequently, a naive compilation process can yield a program that significantly deviates from the real polynomial, whereas a different order of evaluation can result in a program that is close to the real value on all inputs in its domain. We present a compilation scheme for real-valued arithmetic expressions to fixed-point arithmetic programs. Given a real-valued polynomial expression t, we find an expression t' that is equivalent to t over the reals, but whose implementation as a series of fixed-point operations minimizes the error between the fixed-point value and the value of t over the space of all inputs. We show that the corresponding decision problem, checking whether there is an implementation t' of t whose error is less than a given constant, is NP-hard. We then propose a solution technique based on genetic programming. Our technique evaluates the fitness of each candidate program using a static analysis based on affine arithmetic. We show that our tool can significantly reduce the error in the fixed-point implementation on a set of linear control system benchmarks. For example, our tool found implementations whose errors are only one half of the errors in the original fixed-point expressions.
, , , ,