Method, apparatus and computer program product for determining the location of a plurality of speech sources
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The speech signal conveys information on different time scales from short (20–40 ms) time scale or segmental, associated to phonological and phonetic information to long (150–250 ms) time scale or supra segmental, associated to syllabic and prosodic inform ...
In sparse signal representation, the choice of a dictionary often involves a tradeoff between two desirable properties – the ability to adapt to specific signal data and a fast implementation of the dictionary. To sparsely represent signals residing on wei ...
Institute of Electrical and Electronics Engineers2014
Effective representation methods and proper signal priors are crucial in most signal processing applications. In this thesis we focus on different structured models and we design appropriate schemes that allow the discovery of low dimensional latent struct ...
Sparsity has been one of the major drives in signal processing in the last decade. Structured sparsity has also lately emerged as a way to enrich signal priors towards more meaningful and accurate representations. In this paper we propose a new structured ...
Compressed sensing is a new trend in signal processing for efficient sampling and signal acquisition. The idea is that most real-world signals have a sparse representation in an appropriate basis and this can be exploited to capture the sparse signal by ta ...
Is it possible to predict the intrusiveness of background noise in speech signals as perceived by humans? Such a question is important to the automatic evaluation of speech enhancement systems, including those designed for new wideband speech telephony, an ...
In this thesis, methods and models are developed and presented aiming at the estimation, restoration and transformation of the characteristics of human speech. During a first period of the thesis, a concept was developed that allows restoring prosodic voic ...
In this paper, we reconstruct signals from underdetermined linear measurements where the componentwise gains of the measurement system are unknown a priori. The reconstruction is performed through an adaptation of the message-passing algorithm called adapt ...
We propose a new framework, called Filtered Variation (FV), for denoising and sparse signal processing applications. These problems are inherently ill-posed. Hence, we provide regularization to overcome this challenge by using discrete time filters that ar ...
In this paper, we reconstruct signals from underdetermined linear measurements where the componentwise gains of the measurement system are unknown a priori. The reconstruction is performed through an adaptation of the message-passing algorithm called adapt ...