Carathéodory's theorem (convex hull)Carathéodory's theorem is a theorem in convex geometry. It states that if a point lies in the convex hull of a set , then can be written as the convex combination of at most points in . More sharply, can be written as the convex combination of at most extremal points in , as non-extremal points can be removed from without changing the membership of in the convex hull. Its equivalent theorem for conical combinations states that if a point lies in the conical hull of a set , then can be written as the conical combination of at most points in .
Object-oriented programmingObject-Oriented Programming (OOP) is a programming paradigm based on the concept of "objects", which can contain data and code. The data is in the form of fields (often known as attributes or properties), and the code is in the form of procedures (often known as methods). A common feature of objects is that procedures (or methods) are attached to them and can access and modify the object's data fields. In this brand of OOP, there is usually a special name such as or used to refer to the current object.
Convex hull algorithmsAlgorithms that construct convex hulls of various objects have a broad range of applications in mathematics and computer science. In computational geometry, numerous algorithms are proposed for computing the convex hull of a finite set of points, with various computational complexities. Computing the convex hull means that a non-ambiguous and efficient representation of the required convex shape is constructed. The complexity of the corresponding algorithms is usually estimated in terms of n, the number of input points, and sometimes also in terms of h, the number of points on the convex hull.
Linear programmingLinear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints.
Icosahedral symmetryIn mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
Object (computer science)In computer science, an object can be a variable, a data structure, a function, or a method. As regions of memory, objects contain a value and are referenced by identifiers. In the object-oriented programming paradigm, an object can be a combination of variables, functions, and data structures; in particular in class-based variations of the paradigm, an object refers to a particular instance of a class. In the relational model of database management, an object can be a table or column, or an association between data and a database entity (such as relating a person's age to a specific person).
Symmetry in mathematicsSymmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure. This can occur in many ways; for example, if X is a set with no additional structure, a symmetry is a bijective map from the set to itself, giving rise to permutation groups.
Absolutely convex setIn mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set. A subset of a real or complex vector space is called a and is said to be , , and if any of the following equivalent conditions is satisfied: is a convex and balanced set.
Proof theoryProof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.
Formal proofIn logic and mathematics, a formal proof or derivation is a finite sequence of sentences (called well-formed formulas in the case of a formal language), each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence by a rule of inference. It differs from a natural language argument in that it is rigorous, unambiguous and mechanically verifiable. If the set of assumptions is empty, then the last sentence in a formal proof is called a theorem of the formal system.