Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Brain-machine interfaces (BMIs) - devices that connect brain areas to external actuators - strive to restore limb mobility and sensation to patients suffering from paralysis or limb loss. Here we report a novel BMI that controls two virtual arms simultaneously. The development of BMIs for bimanual control is important because even the most basic daily movements such as opening a jar or buttoning a shirt require two arms. We for the first time have designed and implemented a bimanual BMI where activity of multiple cortical areas is translated in real-time into center-out reaching movements performed by two virtual arms. Eight multielectrode arrays, a total of 768 electrode channels, were implanted in the primary motor (M1), sensory (S1), supplementary motor (SMA), dorsal premotor (PMd), and posterior parietal (PP) cortices of both hemispheres of a rhesus monkey. Movement kinematics of each arm were extracted from the same ensemble of 400 neurons using a Wiener filter and an unscented Kalman filter (UKF). Typically, a single neuron contributed to the movements of both left and right arms. Movements were enacted by arms of a virtual rhesus monkey avatar on a computer screen presented in first-person to the monkey. On each trial, the virtual arms moved their central locations to peripheral targets presented simultaneously on the right and left sides of the computer screen. Peri-event time histograms and linear discriminant analysis revealed a highly distributed encoding scheme, with movement directions of both limbs represented by both ipsilateral and contralateral areas. Furthermore, movements were represented by multiple cortical regions, including both primary and non-primary motor areas which have been previously identified areas important for bimanual coordination. Over the course of several weeks of real-time BMI control, the monkey’s performance clearly improved both when the monkey continued to move the joystick and when the joystick was removed. These results support the feasibility of cortically-driven clinical neural prosthetics for bimanual operations.
,
Friedhelm Christoph Hummel, Takuya Morishita, Pablo Maceira Elvira, Manon Chloé Durand-Ruel, Chang-Hyun Park, Maeva Moyne