Weak second order explicit stabilized methods for stiff stochastic differential equations
Related publications (51)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The aim of this project is to implement the Rosenbrock method ROS3P in the C++ Finite Element library LifeV for the solution of systems of ordinary differential equations arising in electrophysiology. In the domain of electrophysiology LifeV implements car ...
Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This approach is illustrat ...
Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-squ ...
A new method for solving numerically stochastic partial differential equations (SPDEs) with multiple scales is presented. The method combines a spectral method with the heterogeneous multiscale method (HMM) presented in [W. E, D. Liu, E. Vanden-Eijnden, An ...
Stabilized or Chebyshev explicit methods have been widely used in the past to solve stiff ordinary differential equations. Making use of special properties of Chebyshev-like polynomials, these methods have favorable stability properties compared to standar ...
In this thesis we investigate different ways of approximating the solution of the chemical master equation (CME). The CME is a system of differential equations that models the stochastic transient behaviour of biochemical reaction networks. It does so by d ...
In this report we study and compare particular integration methods to solve ordinary differential equations, which are separable in solvable parts. The main source for this work is the article of Blanes and Casas: "On the necessity of negative coefficient ...
The numerical analysis of a dynamic constrained optimization problem is presented. It consists of a global minimization problem that is coupled with a system of ordinary differential equations. The activation and the deactivation of inequality constraints ...
Using a stylized two-period model we compare portfolio solutions from two local solution approaches - the approach of Judd and Guu (2001) and the approach of Devereux and Sutherland (2010, 2011) - with the true nonlinear portfolio solution. (C) 2014 The Au ...
Explicit stabilized methods for stiff ordinary differential equations have a long history. Proposed in the early 1960s and developed during 40 years for the integration of stiff ordinary differential equations, these methods have recently been extended to ...