Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The presence of potentially persistent and bioactive human metabolites in surface waters gives rise to concern; yet little is known to date about the environmental fate of these compounds. This work investigates the direct photolysis of human metabolites of the antibiotic sulfamethoxazole (SMX). In particular, we determined photolysis kinetics and products, as well as their concentrations in lake water. SMX, sulfamethoxazole β–D-glucuronide, 4-nitroso sulfamethoxazole and 4-nitro sulfamethoxazole were irradiated under various light sources and pH conditions. All investigated metabolites, except SMX-glucuronide were found to be more photostable than SMX under environmentally relevant conditions. Between two and nine confirmed photoproducts were identified for SMX-metabolites through ultra-performance liquid chromatography/high-resolution mass spectrometry. Interestingly, photolytic back-transformation to SMX was observed for 4-nitroso-SMX, indicating that this metabolite may serve as an environmental source of SMX. Moreover, two human metabolites along with SMX were regularly detected in Lake Geneva. The knowledge that some metabolites retain biological activity, combined with their presence in the environment and their potential to retransform to the parent compound, underlines the importance of including human metabolites when assessing the effects of pharmaceuticals in the environment.