Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are r ...
By directly analyzing brain activity, Brain-Computer Interfaces (BCIs) allow for communication that does not rely on any muscular control and therefore constitute a possible communication channel for the completely paralyzed. Typically, the user performs d ...
Scalp recorded electroencephalogram signals (EEG) reflect the combined synaptic and axonal activity of groups of neurons. In addition to their clinical applications, EEG signals can be used as support for direct brain-computer communication devices (Brain- ...
Brain activity recorded non-invasively is sufficient to control a moblie robot if advanced robotics is used in combination with asynchronous EEG analysis and machine learning techniques. Until now brain-actuated control has mainly relied on implanted elect ...
Institute of Electrical and Electronics Engineers2004
A brain-computer interface (BCI) is a communication system, that implements the principle of "think and make it happen without any physical effort". This means a BCI allows a user to act on his environment only by using his thoughts, without using peripher ...
Recent experiments have indicated the possibility to use the brain electrical activity to directly control the movement of robotics or prosthetic devices. In this talk we report results with a portable non-invasive brain-computer interface that makes possi ...
We present an application of Independent Component Analysis (ICA) to the discrimination of mental tasks for EEG-based Brain Computer Interface systems. ICA is most commonly used with EEG for artifact identification with little work on the use of ICA for di ...
In this paper, we investigate the use of brain activity for person authentication. It has been shown in previous studies that the brain-wave pattern of every individual is unique and that the electroencephalogram (EEG) can be used for biometric identificat ...
Over the last years evidence has accumulated that shows the possibility to analyze human brain activity on-line and translate brain states into actions such as selecting a letter from a virtual keyboard or moving a robotics device. These initial results ha ...
We compare the use of two Markovian models, HMMs and IOHMMs, to discriminate between three mental tasks for brain computer interface systems using an asynchronous protocol. We show that IOHMMs outperform HMMs but that, probably due to the lack of any prior ...