Combinatorial Selection and Least Absolute Shrinkage via the CLASH Algorithm
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Many problems of low-level computer vision and image processing, such as denoising, deconvolution, tomographic reconstruction or super-resolution, can be addressed by maximizing the posterior distribution of a sparse linear model (SLM). We show how higher- ...
Popular transforms, like the discrete cosine transform or the wavelet transform, owe their success to the fact that they promote sparsity. These transforms are capable of extracting the structure of a large class of signals and representing them by a few t ...
Many problems of low-level computer vision and image processing, such as denoising, deconvolution, tomographic reconstruction or super-resolution, can be addressed by maximizing the posterior distribution of a sparse linear model (SLM). We show how higher- ...
The theory of Compressed Sensing (CS) is based on reconstructing sparse signals from random linear measurements. As measurement of continuous signals by digital devices always involves some form of quantization, in practice devices based on CS encoding mus ...
The goal of this paper is to propose diffusion LMS techniques for distributed estimation over adaptive networks, which are able to exploit sparsity in the underlying system model. The approach relies on convex regularization, common in compressive sensing, ...
Over the past decade researches in applied mathematics, signal processing and communications have introduced compressive sampling (CS) as an alternative to the Shannon sampling theorem. The two key observations making CS theory widely applicable to numerou ...
In this paper we propose a method based on (2, 1)-mixed-norm penalization for incorporating a structural prior in FDOT image reconstruction. The effect of (2, 1)-mixed-norm penalization is twofold: first, a sparsifying effect which isolates few anatomical ...
In this paper, we propose a novel second-order regularizer based on the maximum response of the second-order directional derivative, assuming that the image under consideration belongs to the class of piecewise-linear signals. Compared to total-variation r ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2011
We introduce the Multiplicative Update Selector and Estimator (MUSE) algorithm for sparse approximation in under-determined linear regression problems. Given ƒ = Φα* + μ, the MUSE provably and efficiently finds a k-sparse vector α̂ such that ∥Φα̂ − ƒ∥∞ ≤ ∥ ...
In this paper, we propose a novel second-order regularizer based on the maximum response of the second-order directional derivative, assuming that the image under consideration belongs to the class of piecewise-linear signals. Compared to total-variation r ...