Stress–strain analysisStress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. In simple terms we can define stress as the force of resistance per unit area, offered by a body against deformation.
Blood pressureBlood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term "blood pressure" refers to the pressure in a brachial artery, where it is most commonly measured. Blood pressure is usually expressed in terms of the systolic pressure (maximum pressure during one heartbeat) over diastolic pressure (minimum pressure between two heartbeats) in the cardiac cycle.
Purkinje fibersThe Purkinje fibers (pɜːrˈkɪndʒi ; ˈpurkɪɲɛ; Purkinje tissue or subendocardial branches) are located in the inner ventricular walls of the heart, just beneath the endocardium in a space called the subendocardium. The Purkinje fibers are specialized conducting fibers composed of electrically excitable cells. They are larger than cardiomyocytes with fewer myofibrils and many mitochondria. They conduct cardiac action potentials more quickly and efficiently than any of the other cells in the heart's electrical conduction system.
Cardiac skeletonIn cardiology, the cardiac skeleton, also known as the fibrous skeleton of the heart, is a high-density homogeneous structure of connective tissue that forms and anchors the valves of the heart, and influences the forces exerted by and through them. The cardiac skeleton separates and partitions the atria (the smaller, upper two chambers) from the ventricles (the larger, lower two chambers).The heart's cardiac skeleton comprises four dense connective tissue rings that encircle the mitral and tricuspid atrioventricular (AV) canals and extend to the origins of the pulmonary trunk and aorta.
Curve orientationIn mathematics, an orientation of a curve is the choice of one of the two possible directions for travelling on the curve. For example, for Cartesian coordinates, the x-axis is traditionally oriented toward the right, and the y-axis is upward oriented. In the case of a planar simple closed curve (that is, a curve in the plane whose starting point is also the end point and which has no other self-intersections), the curve is said to be positively oriented or counterclockwise oriented, if one always has the curve interior to the left (and consequently, the curve exterior to the right), when traveling on it.
Vasa vasorumVasa vasorum are small blood vessels that comprise a vascular network supplying the walls of large blood vessels, such as elastic arteries (e.g., the aorta) and large veins (e.g., the venae cavae). The name derives . Occasionally two different singular forms are seen: vasa vasis () and vas vasis (). Studies conducted with 3D micro-CT on pig and human arteries from different vascular beds have shown that there are three different types of vasa vasorum: Vasa vasorum internae, that originate directly from the main lumen of the artery and then branch into the vessel wall.
Axes conventionsIn ballistics and flight dynamics, axes conventions are standardized ways of establishing the location and orientation of coordinate axes for use as a frame of reference. Mobile objects are normally tracked from an external frame considered fixed. Other frames can be defined on those mobile objects to deal with relative positions for other objects. Finally, attitudes or orientations can be described by a relationship between the external frame and the one defined over the mobile object.