Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
We review here the development of Hodgkin-Huxley (HH) type models of cerebral cortex and thalamic neurons for network simulations. The intrinsic electrophysiological properties of cortical neurons were analyzed from several preparations, and we selected the four most prominent electrophysiological classes of neurons. These four classes are "fast spiking", "regular spiking", "intrinsically bursting" and "low-threshold spike" cells. For each class, we fit "minimal" HH type models to experimental data. The models contain the minimal set of voltage-dependent currents to account for the data. To obtain models as generic as possible, we used data from different preparations in vivo and in vitro, such as rat somatosensory cortex and thalamus, guinea-pig visual and frontal cortex, ferret visual cortex, cat visual cortex and cat association cortex. For two cell classes, we used automatic fitting procedures applied to several cells, which revealed substantial cell-to-cell variability within each class. The selection of such cellular models constitutes a necessary step towards building network simulations of the thalamocortical system with realistic cellular dynamical properties.
Henry Markram, Werner Alfons Hilda Van Geit, Ying Shi, Sean Lewis Hill, Christian Andreas Rössert, Elisabetta Iavarone, Bas-Jan Zandt, Jane Yi
Lida Kanari, Idan Segev, Guy Antoine Atenekeng Kahou, Guy Eyal, Yair Deitcher