Tuning In to Sound: Frequency-Selective Attentional Filter in Human Primary Auditory Cortex
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Neural oscillations in auditory cortex are argued to support parsing and representing speech constituents at their corresponding temporal scales. Yet, how incoming sensory information interacts with ongoing spontaneous brain activity, what features of the ...
Auditory cortex volume and shape differences have been observed in the context of phonetic learning, musicianship and dyslexia. Heschl's gyrus, which includes primary auditory cortex, displays large anatomical variability across individuals and hemispheres ...
Aversively-motivated associative learning allows animals to avoid harm and thus ensures survival. Aversive learning can be studied by the fear learning paradigm, in which an innocuous sensory stimulus like a tone (conditioned stimulus, CS), acquires a nega ...
In the last twenty years, advances in real-time functional magnetic resonance imaging (rt-fMRI) have offered exciting new tools to study the human brain. One of them, termed rt-fMRI neurofeedback (NF), has turned the MRI scanner environment into an interac ...
We performed magnetic resonance spectroscopy (MRS) on healthy individuals with tinnitus and no hearing loss (n = 16) vs. a matched control group (n = 17) to further elucidate the role of excitatory and inhibitory neurotransmitters in tinnitus. Two-dimensio ...
The influential dual-stream model of auditory processing stipulates that information pertaining to the meaning and to the position of a given sound object is processed in parallel along two distinct pathways, the ventral and dorsal auditory streams. Functi ...
Emotional sounds are processed within a large cortico-subcortical network, of which the auditory cortex, the voice area, and the amygdala are the core regions. Using 7T fMRI, we have compared the effect of emotional valence (positive, neutral, and negative ...
AbstractExcitatory projection neurons of the neocortex are thought to play important roles in per-ceptual and cognitive functions of the brain by directly connecting diverse cortical and subcortical areas. However, many aspects of the anatomical and func ...
Evidence from behavioral studies suggests that the spatial origin of sounds may influence the perception of emotional valence. Using 7T fMRI we have investigated the impact of the categories of sound (vocalizations; non-vocalizations), emotional valence (p ...
The present study describes the ipsilateral and contralateral corticocortical and corticothalamic connectivity of the temporal visual areas 20a and 20b in the ferret using standard anatomical tract-tracing methods. The two temporal visual areas are strongl ...