Publication

On L2-Regularization for Virtual Reference Feedback Tuning

Alireza Karimi
2013
Conference paper
Abstract

The Virtual Reference Feedback Tuning (VRFT) approach is a design method that allow optimal feedback control laws to be derived from input-output (I/O) data only, without need of a model of the process. A drawback of this methods is that, in its standard formulation, it is not statistically efficient. In this paper, it is shown that it can be reformulated as a L2-regularized optimization problem, by keeping the same assumptions and features, such that its statistical performance can be improved using the same data. A convex optimization method is also introduced to find the best regularization matrix. The proposed strategy is finally tested on a benchmark example in digital control system design.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.