Publication

Monitoring of illicit pill distribution networks using an image collection exploration framework

Luc Patiny, Julien Wist
2012
Journal paper
Abstract

This paper proposes a novel approach for the analysis of illicit tablets based on their visual characteristics. In particular, the paper concentrates on the problem of ecstasy pill seizure profiling and monitoring. The presented method extracts the visual information from pill images and builds a representation of it, i.e. it builds a pill profile based on the pill visual appearance. Different visual features are used to build different image similarity measures, which are the basis for a pill monitoring strategy based on both discriminative and clustering models. The discriminative model permits to infer whether two pills come from the same seizure, while the clustering models groups of pills that share similar visual characteristics. The resulting clustering structure allows to perform a visual identification of the relationships between different seizures. The proposed approach was evaluated using a data set of 621 Ecstasy pill pictures. The results demonstrate that this is a feasible and cost effective method for performing pill profiling and monitoring. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (38)
Cluster analysis
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, , information retrieval, bioinformatics, data compression, computer graphics and machine learning.
K-means clustering
k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. k-means clustering minimizes within-cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances.
Visual cortex
The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalamus and then reaches the visual cortex. The area of the visual cortex that receives the sensory input from the lateral geniculate nucleus is the primary visual cortex, also known as visual area 1 (V1), Brodmann area 17, or the striate cortex.
Show more
Related publications (37)

Predicting Visual Stimuli From Cortical Response Recorded With Wide-Field Imaging in a Mouse

Silvestro Micera, Daniela De Luca

Neural decoding of the visual system is a subject of research interest, both to understand how the visual system works and to be able to use this knowledge in areas, such as computer vision or brain-computer interfaces. Spike-based decoding is often used, ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Multi-Centroid Hyperdimensional Computing Approach for Epileptic Seizure Detection

David Atienza Alonso, Tomas Teijeiro Campo, Una Pale

Long-term monitoring of patients with epilepsy presents a challenging problem from the engineering perspective of real-time detection and wearable devices design. It requires new solutions that allow continuous unobstructed monitoring and reliable detectio ...
2022

No Common Factor Underlying Decline of Visual Abilities in Mild Cognitive Impairment

Michael Herzog, Simona Adele Garobbio

Introduction Recent work has shown an association between cognitive and visual impairments and two main theories were advanced, namely the sensory deprivation and the common cause theories. Most studies considered only basic visual functions such as visual ...
2022
Show more
Related MOOCs (2)
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.