Bridging Static and Dynamical Descriptions of Chemical Reactions: An ab Initio Study of CO2 Interacting with Water Molecules
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Through the use of the piecewise-linearity condition of the total energy, we correct the self-interaction for the study of polarons by constructing nonempirical functionals at the semilocal level of theory. We consider two functionals, the gamma DFT and mu ...
Statistical (machine-learning, ML) models are more and more often used in computational chemistry as a substitute to more expensive ab initio and parametrizable methods. While the ML algorithms are capable of learning physical laws implicitly from data, ad ...
The accurate representation of the structural and dynamical properties of water is essential for simulating the unique behavior of this ubiquitous solvent. Here we assess the current status of describing liquid water using ab initio molecular dynamics, wit ...
Computational chemistry aims to simulate reactions and molecular properties at the atomic scale, advancing the design of novel compounds and materials with economic, environmental, and societal implications. However, the field relies on approximate quantum ...
At present, there is no general standard automated method for engineering metalloenzymes, industrially-relevant systems able to catalyze environmentally friendly reactions. One of the most studied natural metalloenzymes is the second isoform of human carbo ...
Carbon nanostructures formed through physical synthesis come in a variety of sizes and shapes. With the end goal of rationalizing synthetic pathways of carbon nanostructures as a function of tunable parameters in the synthesis, we investigate how the initi ...
A long-standing goal of science is to accurately simulate large molecular systems using quantum mechanics. The poor scaling of current quantum chemistry algorithms on classical computers, however, imposes an effective limit of about a few dozen atoms on tr ...
Rare events include many of the most interesting transformation processes in condensed matter, from phase transitions to biomolecular conformational changes to chemical reactions. Access to the corresponding mechanisms, free-energy landscapes and kinetic r ...
Aminoacids and peptides generally exhibit zwitterionic forms withsalt bridge (SB) structures in solution but charge-solvated (CS) motifsin the gas phase. Here, we report a study of non-covalent complexesof the protonated amino acid arginine, ArgH(+)(H2O)( ...
We present an efficient method to compute diffusion coefficients of multiparticle systems with strong interactions directly from the geometry and topology of the potential energy field of the migrating particles. The approach is tested on Li-ion diffusion ...