Four-wave mixing excitations in a dissipative polariton quantum fluid
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We resonantly excite exciton-polariton states confined in cylindrical traps. Using a homodyne detection setup, we are able to image the phase and amplitude of the confined polariton states. We evidence the excitation of vortex states, carrying an integer a ...
We study theoretically superfluidity in a driven-dissipative Bose gas out of thermal equilibrium, and discuss the relation with conventional superfluids. We show how the superfluid behavior is characterized by a dramatic increase in the lifetime of a quant ...
This thesis presents a theoretical description of the phase transition, with formation of long-range spatial coherence, occurring in a gas of exciton-polaritons in a semiconductor microcavity structure. The results and predictions of the theories developed ...
One of the most striking quantum effects in an interacting Bose gas at low temperature is superfluidity. First observed in liquid 4He, this phenomenon has been intensively studied in a variety of systems for its remarkable features such as the persistence ...
Singly quantized vortices have already been observed in many systems, including the superfluid helium, Bose-Einstein condensates of dilute atomic gases, and condensates of exciton-polaritons in the solid state. Two-dimensional superfluids carrying spin are ...
The doped two-dimensional quantum dimer model is investigated by numerical techniques on the square and triangular lattices, with significantly different results. On the square lattice, at small enough doping, there is always a phase separation between an ...