Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The increasing development of social networks provides a unique source for analyzing human dynamics in the modern age. In this paper, we analyze the top-one Internet forum in China ("Tianya Club") and identify the statistical properties of hotspots, which can promptly reflect the crowd events in people's real-life. Empirical observations indicate that the interhotspot distribution follows a power law. To further understand the mechanism of such dynamic phenomena, we propose a hybrid human dynamic model that combines "memory" of individual and "interaction" among people. To build a rich simulation and evaluate this hybrid model, we apply three different network datasets (i.e., WS network, BA network, and Karate-Club). Our simulation results are consistent with the empirical studies, which indicate that the model can provide a good understanding of the dynamic mechanism of crowd events using such social networking data. We additionally analyze the sensitivity of model parameters and find the optimal model settings.
Vincent Kaufmann, Luca Giovanni Pattaroni, Guillaume Simon Joseph Drevon, Marc-Edouard Baptiste Grégoire Schultheiss, Garance Clément, Fiona Ines Del Puppo
,