Publication

Sources, Spreading and Fate of Antibiotic Resistance Genes and Resistant Bacteria in Vidy Bay, Lake Geneva, Switzerland

Nadine Czekalski
2013
EPFL thesis
Abstract

Increasing numbers of multiresistant bacterial pathogens cause severe health problems on a global scale. Large quantities of bacteria and their resistance genes are discharged into natural environments via human and animal waste. Not much is known so far about the fate and further spread of resistance determinants in the environment. There is evidence that aquatic environments may function as important compartments for preserving and exchanging antibiotic resistance genes (ARG) from sewage and drinking water. Lake Geneva is the largest fresh water reservoir of Western Europe and supplies the surrounding cities. At the same time these cities discharge sewage into the lake. Lausanne is the largest city in the lake’s catchment and discharges the highest amount of treated, as well as in case of heavy rain events, partly untreated waste waters. Also two rivers, Chambering and Flown, transport untreated sewage (bypass), in case of storm events. Only 3.4 km from the sewage discharge point lake water is pumped for drinking water preparation for Lausanne. Many studies have reported on contamination of the bay with heavy metals, inorganic nutrients, organic carbon and fecal indicator bacteria due to the sewage discharge. The present thesis aimed on investigating the sources, spreading and fate of antibiotic resistant bacteria and antibiotic resistance genes in the Vida bay, Lake Geneva. In the first part of this dissertation, a screening for antibiotic- and specifically multi-resistant bacteria was carried out as one of the first studies in a Swiss waste water stream and the receiving fresh water lake. For this purpose, a combined set of culture based (viable bacterial counts on nutrient media supplemented with antibiotics) and molecular tools (detection and quantitation of antibiotic resistance genes from environmental DNA-extracts using quantitative real-time PCR) was applied. Raw hospital and communal sewage, as well as partly treated/mixed sewage, which is discharged into the lake via an effluent pipe 700 m off shore, were taken into account. Furthermore lake water samples nearby the end of the waste water discharge pipe and the drinking water pump as well as close to the two river mouths were analyzed. Finally, the role of Lausannes WTP was evaluated for its potential to remove resistant and multiresistant bacteria, as well ARG. Results show highest levels of multiresistant bacteria and ARG in both hospital and communal sewage. Incidence was found that the WTP is a selective environment for multiresistant bacteria and resistance genes. Moreover, lake water and sediments nearby the end of the WTP discharge pipe and the two river mouths exhibited significantly higher levels of resistant determinants as compared to samples from the drinking water uptake. If the level of antibiotic resistance close to the drinking water uptake represents the natural background level of the lake or whether it is impacted by the WTP plume remained open during this first survey. The spatial distribution and persistence of ARG discharged via waste water into lake systems has been evaluated for the first time in the second part of this thesis. 22 sediment cores were sampled along two major transects (leading either into the deep lake or along the south-western shore line to the drinking water uptake) and in the vicinity of the WTP discharge pipe in the Vidy bay. A subset of samples was also analyzed for contamination with a “conventional” pollutant of sewage (mercury), for which a similar transport behavior (particle bound) as for bacteria and their resistance genes is assumed. The microbial community composition in all sediment as well as in waste water samples was analyzed using ARISA. Strong pollution with both ARG and mercury was detected in close proximity of the WTP discharge pipe and both contaminants significantly decreased along the transect into the deep lake. In general however, the spatial contamination of mercury and ARG was only moderately correlated. While the mercury contaminated sediment surface area tended to have a pollution tail in south eastern direction, ARG showed only a slow decrease along the south western transect. These findings imply differences in transport and fate of mercury and ARG in the bay, or additional sources of ARG contamination. Analysis of the microbial diversity in the samples support these hypotheses. This study revealed feasibility of qPCR as a tool to semi-quantitatively track spatial ARG contamination in fresh water lake sediments. Not much is known yet on the antibiotic resistance background level of fresh water lakes and how this may be influenced by anthropogenic activities in the surrounding catchment. Water samples from 21 Swiss lakes have been collected and were analyzed for the prevalence of different ARG (2 sulfonamide resistance genes sul1 & sul2, 3 tetracycline resistance genes tetB, tetM, tetW and one plasmid mediated fluoroquinolone resistance gene qnrA). In order to document the abundance of these genes in the bacterial populations, they were normalized to bacterial 16S rRNA gene copy numbers. The lakes differ in size, geographical position, land use pattern, and trophical status. The composition of the microbial community of all lakes was analyzed using ARISA. Sulfonamide resistance genes were detected in all investigated lakes (0.2-4%, sul1 and 0.01-0.3%, sul2), with highest levels in Lake Baldegger (21%). Lake Baldegger also contained all of the three tetracycline resistance genes, which were found in only 4 other lakes. None of the lakes was positive for qnrA. Important anthropogenic catchment activities linked to sul gene prevalence could not be identified based on our data and may require further analysis and an additional variables to complete our data set. However, our study demonstrates contamination of Swiss lakes with sulfonamide resistance genes and the potential of fresh water lakes preserve these genes, even remote from direct sources of pollution.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (54)
Antimicrobial resistance
Antimicrobial resistance (AMR) occurs when microbes evolve mechanisms that protect them from the effects of antimicrobials (drugs used to treat infections). All classes of microbes can evolve resistance where the drugs are no longer effective. Fungi evolve antifungal resistance. Viruses evolve antiviral resistance. Protozoa evolve antiprotozoal resistance, and bacteria evolve antibiotic resistance. Together all of these come under the umbrella of antimicrobial resistance.
Sewage treatment
Sewage treatment (or domestic wastewater treatment, municipal wastewater treatment) is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from.
Water pollution
Water pollution (or aquatic pollution) is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources: sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution is either surface water pollution or groundwater pollution.
Show more
Related publications (177)

Oxidation processes and me

Urs von Gunten

This publication summarizes my journey in the field of chemical oxidation processes for water treatment over the last 30+ years. Initially, the efficiency of the application of chemical oxidants for micropollutant abatement was assessed by the abatement of ...
Pergamon-Elsevier Science Ltd2024

Systematic mapping of antibiotic cross-resistance and collateral sensitivity with chemical genetics

Camille Véronique Bernadette Goemans, Florian Huber

By acquiring or evolving resistance to one antibiotic, bacteria can become resistant to a second one, due to shared underlying mechanisms. This is called cross-resistance (XR) and further limits therapeutic choices. The opposite scenario, in which initial ...
2024

Homogeneous vs. heterogeneous photo-Fenton elimination of antibiotic-resistant bacteria bearing intracellular or extracellular resistance: Do resistance mechanisms interfere with disinfection pathways?

César Pulgarin, Stefanos Giannakis, Truong-Thien Melvin Le, Jérémie Decker

The present study aimed to fill the knowledge gap between the implications of intracellular and extracellular antibiotic resistance mechanisms may inflict on the inactivation pathways of the photo-Fenton process under mild conditions. It was thus designed ...
London2024
Show more
Related MOOCs (3)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Analyse du cycle de vie environmental
MOOC introduction à la pensée du cycle de vie et aux concepts théoriques pour réaliser et critiquer une analyse du cycle de vie.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.