Publication

Experimental Investigation on Reinforced Ultra-High-Performance Fiber-Reinforced Concrete Composite Beams Subjected to Combined Bending and Shear

Talayeh Noshiravani
2013
Journal paper
Abstract

An experimental study on a series of composite beams combining a 250 mm (9.84 in.) deep reinforced concrete (RC) element and a 50 mm (1.97 in.) thick reinforced ultra-high-performance fiber-reinforced concrete (R-UHPFRC) element is presented. The specimens are tested in a cantilever-beam setup with the R-UHPFRC element acting as an additional tensile reinforcement. The test parameters include the span length and the ratio and type of the steel reinforcing bars, including stirrups. Most of the beams fail in flexure at a force that is 2.0 to 2.8 times higher than the resistance of the reference RC beams. The medium-span cantilevers with a low stirrup content failure along a flexure-shear crack. Near-interface concrete cracking softens the bond between the elements and enhances the member deformation capacity. The R-UHPFRC element contributes significantly to the shear resistance.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (16)
Reinforced concrete
Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel bars (rebar) and is usually embedded passively in the concrete before the concrete sets. However, post-tensioning is also employed as a technique to reinforce the concrete. In terms of volume used annually, it is one of the most common engineering materials.
Rebar
Rebar (short for reinforcing bar), known when massed as reinforcing steel or reinforcement steel, is a steel bar used as a tension device in reinforced concrete and reinforced masonry structures to strengthen and aid the concrete under tension. Concrete is strong under compression, but has low tensile strength. Rebar significantly increases the tensile strength of the structure. Rebar's surface features a continuous series of ribs, lugs or indentations to promote a better bond with the concrete and reduce the risk of slippage.
Prestressed concrete
Prestressed concrete is a form of concrete used in construction. It is substantially "prestressed" (compressed) during production, in a manner that strengthens it against tensile forces which will exist when in service. This compression is produced by the tensioning of high-strength "tendons" located within or adjacent to the concrete and is done to improve the performance of the concrete in service. Tendons may consist of single wires, multi-wire strands or threaded bars that are most commonly made from high-tensile steels, carbon fiber or aramid fiber.
Show more
Related publications (33)

Influence of model uncertainty and long term deformations in action effects calculation in reinforced concrete structures

Xhemsi Malja

Most codes of practice adopt a semi probabilistic design approach for the dimensioning and assessment of structures. Accordingly, structural safety is ensured by performing limit state verifications using design values determined with adequately calibrated ...
EPFL2024

Shear and steel-fibre reinforcement for the punching resistance of flat slabs at internal and edge columns

Diego Hernández Fraile

Reinforced concrete flat slabs consist of a continuous, thin concrete plate that rests on a grid of columns. The supporting surface of the columns is very small compared to the floor plan dimensions, leading to concentrations of shear forces near the colum ...
EPFL2024

Contributions to rebar-to-concrete interaction and its structural implications for design and monitoring applications

Enrique Corres Sojo

Bond between reinforcing bars and concrete has been the focus of extensive research over the last century. This is well-justified as the functioning of reinforced concrete intimately depends on the interaction between rebar and concrete, as for example cra ...
EPFL2024
Show more
Related MOOCs (2)
The Art of Structures I - Cables and arcs
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
The Art of Structures I - Cables and arcs
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s