Publication

The effect of continuous positive airway pressure on total cerebral blood flow in healthy awake volunteers

Abstract

Continuous positive airway pressure (CPAP) is the gold standard treatment for obstructive sleep apnea. However, the physiologic impact of CPAP on cerebral blood flow (CBF) is not well established. Ultrasound can be used to estimate CBF, but there is no widespread accepted protocol. We studied the physiologic influence of CPAP on CBF using a method integrating arterial diameter and flow velocity (FV) measurements obtained for each vessel supplying blood to the brain. FV and lumen diameter of the left and right internal carotid, vertebral, and middle cerebral arteries were measured using duplex Doppler ultrasound with and without CPAP at 15 cm H2O, applied in a random order. Transcutaneous carbon dioxide (PtcCO(2)), heart rate (HR), blood pressure (BP), and oxygen saturation were monitored. Results were compared with a theoretical prediction of CBF change based on the effect of partial pressure of carbon dioxide on CBF. Data were obtained from 23 healthy volunteers (mean +/- SD; 12 male, age 25.1 +/- 2.6 years, body mass index 21.8 +/- 2.0 kg/m(2)). The mean experimental and theoretical CBF decrease under CPAP was 12.5 % (p < 0.001) and 11.9 % (p < 0.001), respectively. The difference between experimental and theoretical CBF reduction was not statistically significant (3.84 +/- 79 ml/min, p = 0.40). There was a significant reduction in PtcCO(2) with CPAP (p = < 0.001) and a significant increase in mean BP (p = 0.0017). No significant change was observed in SaO(2) (p = 0.21) and HR (p = 0.62). Duplex Doppler ultrasound measurements of arterial diameter and FV allow for a noninvasive bedside estimation of CBF. CPAP at 15 cm H2O significantly decreased CBF in healthy awake volunteers. This effect appeared to be mediated predominately through the hypocapnic vasoconstriction coinciding with PCO2 level reduction. The results suggest that CPAP should be used cautiously in patients with unstable cerebral hemodynamics.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (50)
Cerebral circulation
Cerebral circulation is the movement of blood through a network of cerebral arteries and veins supplying the brain. The rate of cerebral blood flow in an adult human is typically 750 milliliters per minute, or about 15% of cardiac output. Arteries deliver oxygenated blood, glucose and other nutrients to the brain. Veins carry "used or spent" blood back to the heart, to remove carbon dioxide, lactic acid, and other metabolic products. The neurovascular unit regulates cerebral blood flow so that activated neurons can be supplied with energy in the right amount and at the right time.
Blood pressure
Blood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term "blood pressure" refers to the pressure in a brachial artery, where it is most commonly measured. Blood pressure is usually expressed in terms of the systolic pressure (maximum pressure during one heartbeat) over diastolic pressure (minimum pressure between two heartbeats) in the cardiac cycle.
Medical ultrasound
Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g. distances and velocities) or to generate an informative audible sound. The usage of ultrasound to produce visual images for medicine is called medical ultrasonography or simply sonography, or echography.
Show more
Related publications (71)

Reduced order modeling of parametrized pulsatile blood flows: Hematocrit percentage and heart rate

Ricardo Reyes Sotomayor

This paper numerically evaluates the accuracy and performance of a stabilized finite element Reduced Order Modelling (ROM) approach that is designed to simulate pulsatile blood flows. The method is able to estimate fluid flow parametric solutions of intere ...
PERGAMON-ELSEVIER SCIENCE LTD2023

On the similarity between aortic and carotid pressure diastolic decay: a mathematical modelling study

Nikolaos Stergiopoulos, Georgios Rovas, Sokratis Anagnostopoulos, Vasiliki Bikia

Aortic diastolic pressure decay (DPD) has been shown to have considerable pathophysiological relevance in the assessment of vascular health, as it is significantly affected by arterial stiffening. Nonetheless, the aortic pressure waveform is rarely availab ...
NATURE PORTFOLIO2023

Preserved Corticospinal Tract Revealed by Acute Perfusion Imaging Relates to Better Outcome After Thrombectomy in Stroke

Friedhelm Christoph Hummel, Philipp Johannes Koch

BACKGROUND:The indication for mechanical thrombectomy (MT) in stroke patients with large vessel occlusion has been constantly expanded over the past years. Despite remarkable treatment effects at the group level in clinical trials, many patients remain sev ...
Philadelphia2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.