**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves

Abstract

In this paper we show that the hydrodynamic problem for three-dimensional water waves with strong surface-tension effects admits a fully localised solitary wave which decays to the undisturbed state of the water in every horizontal direction. The proof is based upon the classical variational principle that a solitary wave of this type is a critical point of the energy, which is given in dimensionless coordinates by epsilon(eta, phi) = integral(R2){1/2 integral(1+eta)(0) (phi(2)(x) + phi(2)(y) + phi(2)(z))dy +1/2 eta(2) + beta[root 1 + eta(2)(x) + eta(2)(z) - 1]}dxdz, subject to the constraint that the momentum I(eta, phi) = integral(R2)eta(x)phi vertical bar(y=1+eta)dzdz is fixed; here {(x, y, z): x, z is an element of R, y is an element of (0, 1 + eta(x, z))} is the fluid domain, phi is the velocity potential and beta > 1/3 is the Bond number. These functionals are studied locally for eta in a neighbourhood of the origin in H-3(R-2). We prove the existence of a minimiser of epsilon subject to the constraint I = 2 mu, where 0 < mu < 1. The existence of a small-amplitude solitary wave is thus assured, and since epsilon and I are both conserved quantities a standard argument may be used to establish the stability of the set D-mu of minimisers as a whole. 'Stability is however understood in a qualified sense due to the lack of a global well-posedness theory for three-dimensional water waves. We show that solutions to the evolutionary problem starting near D-mu remain close to D-mu in a suitably defined energy space over their interval of existence; they may however explode in finite time due to higher-order derivatives becoming unbounded. (C) 2012 Elsevier Inc. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (1)

Derivative

In mathematics, the derivative shows the sensitivity of change of a function's output with respect to the input. Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.