Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of C-13 and Si-29 nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via H-1-H-1 spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements epsilon(on/off) of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to epsilon(on/off) approximate to 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.