Publication

MMSE Estimation of Sparse Levy Processes

Abstract

We investigate a stochastic signal-processing framework for signals with sparse derivatives, where the samples of a Levy process are corrupted by noise. The proposed signal model covers the well-known Brownian motion and piecewise-constant Poisson process; moreover, the Levy family also contains other interesting members exhibiting heavy-tail statistics that fulfill the requirements of compressibility. We characterize the maximum-a-posteriori probability (MAP) and minimum mean-square error (MMSE) estimators for such signals. Interestingly, some of the MAP estimators for the Levy model coincide with popular signal-denoising algorithms (e.g., total-variation (TV) regularization). We propose a novel non-iterative implementation of the MMSE estimator based on the belief-propagation (BP) algorithm performed in the Fourier domain. Our algorithm takes advantage of the fact that the joint statistics of general Levy processes are much easier to describe by their characteristic function, as the probability densities do not always admit closed-form expressions. We then use our new estimator as a benchmark to compare the performance of existing algorithms for the optimal recovery of gradient-sparse signals.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Estimation theory
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An estimator attempts to approximate the unknown parameters using the measurements.
Minimum-variance unbiased estimator
In statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter. For practical statistics problems, it is important to determine the MVUE if one exists, since less-than-optimal procedures would naturally be avoided, other things being equal. This has led to substantial development of statistical theory related to the problem of optimal estimation.
Minimum mean square error
In statistics and signal processing, a minimum mean square error (MMSE) estimator is an estimation method which minimizes the mean square error (MSE), which is a common measure of estimator quality, of the fitted values of a dependent variable. In the Bayesian setting, the term MMSE more specifically refers to estimation with quadratic loss function. In such case, the MMSE estimator is given by the posterior mean of the parameter to be estimated.
Show more
Related publications (87)

A Statistical Framework to Investigate the Optimality of Signal-Reconstruction Methods

Michaël Unser, Pakshal Narendra Bohra

We present a statistical framework to benchmark the performance of reconstruction algorithms for linear inverse problems, in particular, neural-network-based methods that require large quantities of training data. We generate synthetic signals as realizati ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Density Estimation In Rkhs With Application To Korobov Spaces In High Dimensions

Fabio Nobile, Yoshihito Kazashi

A kernel method for estimating a probability density function from an independent and identically distributed sample drawn from such density is presented. Our estimator is a linear combination of kernel functions, the coefficients of which are determined b ...
SIAM PUBLICATIONS2023

A Shape Derivative Approach to Domain Simplification

Annalisa Buffa, Jochen Peter Hinz, Ondine Gabrielle Chanon, Alessandra Arrigoni

The objective of this study is to address the difficulty of simplifying the geometric model in which a differential problem is formulated, also called defeaturing, while simultaneously ensuring that the accuracy of the solution is maintained under control. ...
Oxford2023
Show more
Related MOOCs (17)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.