Publication

Optimizing Quantize-Map-and-Forward Relaying for Gaussian Diamond Networks

Abstract

We evaluate the information-theoretic achievable rates of Quantize-Map-and-Forward (QMF) relaying schemes over Gaussian N-relay diamond networks. Focusing on vector Gaussian quantization at the relays, our goal is to understand how close to the cutset upper bound these schemes can achieve in the context of diamond networks, and how much benefit is obtained by optimizing the quantizer distortions at the relays. First, with noise-level quantization, we point out that the worst-case gap from the cutset upper bound is (N + log(2) N) bits/s/Hz. A better universal quantization level found without using channel state information (CSI) leads to a sharpened gap of log(2) N + log(2)(1 + N) + Nlog(2)(1 + 1/N) bits/s/Hz. On the other hand, it turns out that finding the optimal distortion levels depending on the channel gains is a non-trivial problem in the general N-relay setup. We manage to solve the two-relay problem and the symmetric N-relay problem analytically, and show the improvement via numerical evaluations both in static as well as slow-fading channels.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.