Publication

Mechanism to Trigger Unfolding in O6--Alkylguanine-DNA Alkyltransferase

Abstract

O6-alkylguanine-DNA alkyltransferase (AGT) adopts a non-enzymatic suicide mechanism for the repair of methylated guanine bases by transferring the methyl adduct to itself, thereby initiating unfolding and fast degradation. Classical molecular dynamics simulations provide quantitative evidence that two conserved glycine residues at the centre of an -helix make the structure susceptible to structural perturbations. The stability of this helix, designated the recognition helix, is an important factor during the early onset of unfolding of human AGT (hAGT). By combining theory and experiment, we found that helical stability is controlled by key factors in the surrounding protein structure. By using a double-clip mechanism, nearby residues hydrogen bond to both the base and centre of the helix. This double clip stabilises this site in the protein in the absence of substrate, but the helix is destabilised upon alkylation. The present investigation aimed to establish why alkylation of hAGT leads to conformational changes and how the protein environment functions as a switch, thus turning the stability of the protein on or off to tune degradability.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Protein folding
Protein folding is the physical process where a protein chain is translated into its native three-dimensional structure, typically a "folded" conformation, by which the protein becomes biologically functional. Via an expeditious and reproducible process, a polypeptide folds into its characteristic three-dimensional structure from a random coil. Each protein exists first as an unfolded polypeptide or random coil after being translated from a sequence of mRNA into a linear chain of amino acids.
Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.
Alpha helix
An alpha helix (or α-helix) is a sequence of amino acids in a protein that are twisted into a coil (a helix). The alpha helix is the most common structural arrangement in the secondary structure of proteins. It is also the most extreme type of local structure, and it is the local structure that is most easily predicted from a sequence of amino acids. The alpha helix has a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid that is four residues earlier in the protein sequence.
Show more
Related publications (51)

Opportunities and challenges in design and optimization of protein function

Bruno Emanuel Ferreira De Sousa Correia, Casper Alexander Goverde

The field of protein design has made remarkable progress over the past decade. Historically, the low reliability of purely structure-based design methods limited their application, but recent strategies that combine structure-based and sequence-based calcu ...
Nature Portfolio2024

De novo protein design by inversion of the AlphaFold structure prediction network

Bruno Emanuel Ferreira De Sousa Correia, Hamed Khakzad, Casper Alexander Goverde, Stéphane Rosset, Benedict Dieter Gregor Wolf

De novo protein design enhances our understanding of the principles that govern protein folding and interactions, and has the potential to revolutionize biotechnology through the engineering of novel protein functionalities. Despite recent progress in comp ...
2023

A new age in protein design empowered by deep learning

Bruno Emanuel Ferreira De Sousa Correia, Michael Bronstein, Hamed Khakzad, Casper Alexander Goverde, Arne Schneuing, Ilia Igashov

The rapid progress in the field of deep learning has had a significant impact on protein design. Deep learning methods have recently produced a breakthrough in protein structure prediction, leading to the availability of high-quality models for millions of ...
Cambridge2023
Show more
Related MOOCs (1)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.