Publication

Linear Function Computation in Networks: Duality and Constant Gap Results

Michael Christoph Gastpar
2013
Journal paper
Abstract

In linear function computation, multiple source nodes communicate across a relay network to a single destination whose goal is to recover linear functions of the original source data. When the relay network is a linear deterministic network, a duality relation is established between function computation and broadcast with common messages. Using this relation, a compact sufficient condition is found describing those cases where the cutset bound is tight. These insights are used to develop results for the case where the relay network contains Gaussian multipleaccess channels. The proposed scheme decouples the physical and network layers. Using lattice codes for both source quantization and computation in the physical layer, the original Gaussian sources are converted into discrete sources and the Gaussian network into a linear deterministic network. Network codes for computing functions of discrete sources across the deterministic network are then found by applying the duality relation. The distortion for computing the sum of an arbitrary number of independent Gaussian sources over the Gaussian network is proven to be within a constant factor of the optimal performance. Furthermore, the constant factor results are extended to include asymmetric functions for the case of two sources.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.