Modelling hysteresis in the transport of eroded sediment
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Rainfall characteristics such as intensity, duration, and frequency are key determinants of the hydro-geomorphological response of a catchment. The presence of non-linear and threshold effects makes the relationship between rainfall variability and geomorp ...
In computational hydraulics models, predicting bed topography and bedload transport with sufficient accuracy remains a significant challenge. An accurate assessment of a river's sediment transport rate necessitates a prior understanding of its bed topograp ...
Despite their high ecological value, non-perennial streams have received less attention than their perennial counterparts. This doctoral thesis addresses this disparity by advancing knowledge on the dynamics of the drainage density and hydrologic processes ...
Sediment transport in geophysical boundary layer flows has relevance to a broad spectrum of sciences ranging from the physical and chemical, to the biological, ecological and geological. Advances in sediment transport modelling and prediction strongly suff ...
The ecological effects of dams on sediment and river flow have been subject to an increasing attention, leading to the implementation of mitigation measures such as environmental flow release and sediment replenishment. However, fine sediment dynamics have ...
Fine sediment represents an important part of the solid flux of rivers. Due to the size of these particles, they are often transported as suspended load. They gradually fill the pores of the substrate forming the hyporheic zone or cover the substrate by se ...
In the riverine environment, the riverscape, sediment and flow regime are essential drivers for natural habitat dynamics. Today, most water courses in Europe are regulated, and their natural dynamics are impaired. Flood releases coupled with the artificial ...
Reservoir sedimentation is a key challenge for storage sustainability because it causes volume loss, affecting hydropower production capacity, dam safety, and flood management. A preliminary EPFL study proposed and studied an innovative device (called SEDM ...
Riverbeds represent the habitat of numerous aquatic species. Exchanges between the groundwater, the hyporheic zone and the surface flow are also essential for river ecosystems. Fine sediment transported by rivers deposits inside or on top of the bed and mo ...
Reservoir sedimentation is a key challenge for storage sustainability because it causes volume loss, affecting hydropower production capacity, dam safety, and flood management. A preliminary EPFL study proposed and studied an innovative device (called SEDM ...