Publication

Optical Nyquist-pulse generation with a power difference to the ideal sinc-shape sequence of < 1%

Abstract

Sinc-shaped Nyquist-pulses possess a rectangular spectrum. Thus, a sinc-pulse transmission minimizes the carrier spacing down to the baud rate, and therefore, substantially increases the transmissible data rates. These perspectives have led to a strong research activity in the field of Nyquist pulse transmission. However, all methods of Nyquist pulse generation shown up to now are rather complex, costly and none leads to ideal sinc-shaped Nyquist pulses. Thus, it has not been clear yet if Nyquist-pulse transmission can be incorporated in optical networks in an energy and cost-effective way. Here we present a method for the generation of almost ideal sinc-shaped Nyquist pulses based on a flat and phase-locked frequency comb. The pulses can be generated with conventional modulators without any sophisticated electronics or other costly equipment. In our proof-of-concept experiment we generate sinc-shaped Nyquist-pulse sequences which show a power difference lower than 1% compared to an ideal sequence. Generated sinc pulses have a full width at half maximum (FWHM) duration of 9.8 ps, an out-of-band suppression of more than 27 dB, a signal-to-noise ratio of more than 40 dB and a jitter of 82 fs, equivalent to 0.82% of the FWHM. The pulse width and repetition rate can be changed simply by tuning the comb parameters.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Pulse shaping
In electronics and telecommunications, pulse shaping is the process of changing a transmitted pulses' waveform to optimize the signal for its intended purpose or the communication channel. This is often done by limiting the bandwidth of the transmission and filtering the pulses to control intersymbol interference. Pulse shaping is particularly important in RF communication for fitting the signal within a certain frequency band and is typically applied after line coding and modulation.
Pulse-width modulation
Pulse-width modulation (PWM), or pulse-duration modulation (PDM), is a method of controlling the average power delivered by an electrical signal. The average value of voltage (and current) fed to the load is controlled by switching the supply between 0 and 100% at a rate faster than it takes the load to change significantly. The longer the switch is on, the higher the total power supplied to the load. Along with maximum power point tracking (MPPT), it is one of the primary methods of controlling the output of solar panels to that which can be utilized by a battery.
Signal-to-noise ratio
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more signal than noise. SNR is an important parameter that affects the performance and quality of systems that process or transmit signals, such as communication systems, audio systems, radar systems, imaging systems, and data acquisition systems.
Show more
Related publications (41)

Spike-Based Sensing and Communication for Highly Energy-Efficient Sensor Edge Nodes

Mihai Adrian Ionescu, Teodor Rosca

Highly energy-efficient wireless sensor nodes are a prerequisite for a sustainable operation of the Internet of things. Therefore, classical approaches for system design based on digital signal processing are not a viable solution, but system design has to ...
IEEE2022

PHz Electronic Device Design and Simulation for Waveguide-Integrated Carrier-Envelope Phase Detection

Yujia Yang

Carrier-envelope phase (CEP) detection of ultrashort optical pulses and low-energy waveform field sampling have recently been demonstrated using direct time-domain methods that exploit optical-field photoemission from plasmonic nanoantennas. These devices ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022

Energy-Efficient Design Techniques for High-Speed Wireline Serial Links

Firat Çelik

The exponential growth in computing power and multimedia services has caused a tremendous increase in data traffic in recent years. This increase in data traffic brings a strong demand for data bandwidth of electrical input/output (I/O) links and pushes th ...
EPFL2021
Show more
Related MOOCs (8)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more