FE heterogeneous multiscale method for long time wave propagation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we study local well-posedness and orbital stability of standing waves for a singularly perturbed one-dimensional nonlinear Klein-Gordon equation. We first establish local well-posedness of the Cauchy problem by a fixed point argument. Unlike ...
We use the nodal discontinuous Galerkin method with a Lax-Friedrich flux to model the wave propagation in transversely isotropic and poroelastic media. The effect of dissipation due to global fluid flow causes a stiff relaxation term, which is incorporated ...
We present an exact mathematical framework for electromagnetic wave propagation in periodically time-modulated media, in which the permittivity is homogenous and modulated in a step-varying fashion. By using Hill’s equation theory, we show that this proble ...
Discontinuous Galerkin methods have desirable properties, which make them suitable for the com- putation of wave problems. Being parallelizable and hp-adaptive makes them attractive for the simulation of large-scale tsunami propagation. In order to retriev ...
Modeling wave propagation in highly heterogeneous media is of prime importance in engineering applications of diverse nature such as seismic inversion, medical imaging or the design of composite materials. The numerical approximation of such multiscale phy ...
Multiscale or multiphysics partial differential equations are used to model a wide range of physical systems with various applications, e.g. from material and natural science to problems in biology or engineering. When the ratio between the smallest scale ...
The aim of this paper is to obtain a posteriori error bounds of optimal order in time and space for the linear second-order wave equation discretized by the Newmark scheme in time and the finite element method in space. An error estimate is derived in the ...
In this study, based on multipole expansion method an analytical treatment is presented for the anti-plane scattering of SH-waves by an arbitrarily oriented elliptic cavity/crack which is embedded near the interface between exponentially graded and homogen ...
In this paper we give a survey on various multiscale methods for the numerical solution of second order hyperbolic equations in highly heterogenous media. We concentrate on the wave equation and distinguish between two classes of applications. First we dis ...
We show that the finite time type II blow up solutions for the energy critical nonlinear wave equation [ \Box u = -u^5 ] on R3+1 constructed in [28], [27] are stable along a co-dimension three manifold of radial data perturbations in a suit ...