We present a doubly parallelized layered quasi-cyclic low density parity-check decoder for the emerging IEEE 802.11ad multigigabit wireless standard. The decoding algorithm is equivalent to a nonparallelized layered decoder and, thus, retains its favorable convergence characteristics, which are known to be superior to those of flooding schedule based decoders. The proposed architecture was synthesized using a TSMC 40 nm CMOS technology, resulting in a cell area of 0.18 mm2 and a clock frequency of 850 MHz. At this clock frequency, the decoder achieves a coded throughput of 3.12 Gbps, thus meeting the throughput requirements when using both the mandatory BPSK modulation and the optional QPSK modulation.
Andreas Peter Burg, Alexios Konstantinos Balatsoukas Stimming, Yifei Shen, Yuqing Ren, Hassan Harb
Andreas Peter Burg, Alexios Konstantinos Balatsoukas Stimming, Andreas Toftegaard Kristensen, Yifei Shen, Yuqing Ren, Chuan Zhang