Efficient First-Principles Calculation of the Quantum Kinetic Energy and Momentum Distribution of Nuclei
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis, we propose model order reduction techniques for high-dimensional PDEs that preserve structures of the original problems and develop a closure modeling framework leveraging the Mori-Zwanzig formalism and recurrent neural networks. Since high ...
The local physical properties - such as shape and flexibility - of the DNA double-helix is today widely believed to be influenced by nucleic acid sequence in a non-trivial way. Furthermore, there is strong evidence that these properties play a role in many ...
This paper introduces a model-agnostic approach to study statistical synergy, a form of emergence in which patterns at large scales are not traceable from lower scales. Our framework leverages various multivariate extensions of Shannon's mutual information ...
The free energy plays a fundamental role in theories of phase transformations and microstructure evolution. It encodes the thermodynamic coupling between different fields, such as mechanics and chemistry, within continuum descriptions of non-equilibrium ma ...
At room temperature, the quantum contribution to the kinetic energy of a water molecule exceeds the classical contribution by an order of magnitude. The quantum kinetic energy (QKE) of a water molecule is modulated by its local chemical environment and lea ...
Atomistic simulations are a bottom up approach that predict properties
of materials by modelling the quantum mechanical behaviour of all electrons
and nuclei present in a system. These simulations, however, routinely assume
nuclei to be classical particles ...
We study the statistical mechanics and the equilibrium dynamics of a system of classical Heisenberg spins with frustrated interactions on a d -dimensional simple hypercubic lattice, in the limit of infinite dimensionality d -> infinity . In the analysis we ...
We revisit the statistical mechanics of charge fluctuations in capacitors. In constant-potential classical molecular simulations, the atomic charges of electrode atoms are treated as additional degrees of freedom which evolve in time so as to satisfy the c ...
New materials for electrochemical energy storage and conversion are the key to the electrification and sustainable development of our modern societies. Molecular modelling based on the principles of quantum mechanics and statistical mechanics as well as em ...
Predictions of relative stabilities of (competing) molecular crystals are of great technological relevance, most notably for the pharmaceutical industry. However, they present a long-standing challenge for modeling, as often minuscule free energy differenc ...