SerializationIn computing, serialization (or serialisation) is the process of translating a data structure or object state into a format that can be stored (e.g. in secondary storage devices, data buffers in primary storage devices) or transmitted (e.g. data streams over computer networks) and reconstructed later (possibly in a different computer environment). When the resulting series of bits is reread according to the serialization format, it can be used to create a semantically identical clone of the original object.
Object-oriented programmingObject-Oriented Programming (OOP) is a programming paradigm based on the concept of "objects", which can contain data and code. The data is in the form of fields (often known as attributes or properties), and the code is in the form of procedures (often known as methods). A common feature of objects is that procedures (or methods) are attached to them and can access and modify the object's data fields. In this brand of OOP, there is usually a special name such as or used to refer to the current object.
Data typeIn computer science and computer programming, a data type (or simply type) is a collection or grouping of data values, usually specified by a set of possible values, a set of allowed operations on these values, and/or a representation of these values as machine types. A data type specification in a program constrains the possible values that an expression, such as a variable or a function call, might take. On literal data, it tells the compiler or interpreter how the programmer intends to use the data.
Scala (programming language)Scala (ˈskɑːlə ) is a strong statically typed high-level general-purpose programming language that supports both object-oriented programming and functional programming. Designed to be concise, many of Scala's design decisions are aimed to address criticisms of Java. Scala source code can be compiled to Java bytecode and run on a Java virtual machine (JVM). Scala can also be compiled to JavaScript to run in a browser, or directly to a native executable.
Marshalling (computer science)In computer science, marshalling or marshaling (US spelling) is the process of transforming the memory representation of an object into a data format suitable for storage or transmission. It is typically used when data must be moved between different parts of a computer program or from one program to another. Marshalling can be somewhat similar to or synonymous with serialization. Marshalling is describing an intent or process to transfer some object from a client to server.
Primitive data typeIn computer science, primitive data types are a set of basic data types from which all other data types are constructed. Specifically it often refers to the limited set of data representations in use by a particular processor, which all compiled programs must use. Most processors support a similar set of primitive data types, although the specific representations vary. More generally, "primitive data types" may refer to the standard data types built into a programming language (built-in types).
Algebraic data typeIn computer programming, especially functional programming and type theory, an algebraic data type (ADT) is a kind of composite type, i.e., a type formed by combining other types. Two common classes of algebraic types are product types (i.e., tuples and records) and sum types (i.e., tagged or disjoint unions, coproduct types or variant types). The values of a product type typically contain several values, called fields. All values of that type have the same combination of field types.
SubtypingIn programming language theory, subtyping (also subtype polymorphism or inclusion polymorphism) is a form of type polymorphism in which a subtype is a datatype that is related to another datatype (the supertype) by some notion of substitutability, meaning that program elements, typically subroutines or functions, written to operate on elements of the supertype can also operate on elements of the subtype. If S is a subtype of T, the subtyping relation (written as S
Recursive data typeIn computer programming languages, a recursive data type (also known as a recursively-defined, inductively-defined or inductive data type) is a data type for values that may contain other values of the same type. Data of recursive types are usually viewed as directed graphs. An important application of recursion in computer science is in defining dynamic data structures such as Lists and Trees. Recursive data structures can dynamically grow to an arbitrarily large size in response to runtime requirements; in contrast, a static array's size requirements must be set at compile time.
Identity (object-oriented programming)In object-oriented programming, object-oriented design and object-oriented analysis, the identity of an object is its being distinct from any other object, regardless of the values of the objects' properties. Having identity is a fundamental property of objects. This is closely related to the philosophical concept of identity. A reference can be used to refer to an object with a specific identity. A reference contains the information that is necessary for the identity property to be realized in the programming language, and allows access to the object with the identity.