The Mechanism of High-Temperature Superconductivity with a Pinch of Iron
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The optimally doped '122' iron-based superconductor Ba0.6K0.4Fe2As2 has been studied by Fe-57 Mossbauer spectroscopy versus temperature ranging from 4.2 K till 300 K with particular attention paid to the superconducting transition around 38 K. The spectra ...
In layered superconductors, Josephson junctions may be formed within the unit cell1,2,3 as a result of sufficiently low inter-layer coupling. These intrinsic Josephson junction (iJJ) systems4 have attracted considerable interest for their application poten ...
More than one hundred years after the discovery of superconductivity in Leiden, the intriguing physics of several unconventional classes of superconductors continue to fascinate and challenge scientists from all over the world. The majority of these compou ...
Since the discovery of cuprate superconductors in 1986, the subject of high temperature superconductivity has triggered a lot of scientific activity. Despite enormous efforts, the origin of high-temperature superconductivity is still the subject of intense ...
High-temperature superconductivity remains arguably the greatest enigma of condensed matter physics. The discovery of iron-based high-temperature superconductors [1, 2] has renewed the importance of understanding superconductivity in materials susceptible ...
Institute of Physics (IoP) and Deutsche Physikalische Gesellschaft2012
Antiferromagnetic insulators at low temperatures offer a clean arena to study non-semiclassical phenomena because the character of interactions is usually known. Macroscopic properties of the system can then be calculated by more or less sophisticated appr ...
The mechanism of high-temperature superconductivity has not been resolved for so long because the normal state of cuprates, which exhibits enigmatic pseudogap phenomena, is not yet understood. We performed careful temperature- and momentum-resolved photoem ...
We present high-resolution triple-axis neutron scattering studies of the high-temperature superconductor La1.88Sr0.12CuO4 (Tc=27 K). The temperature dependence of the low-energy incommensurate magnetic fluctuations reveals distinctly glassy features. The g ...
More than twenty five years have passed since the discovery of the first copper oxide based superconductor La2-xBaxCuO4 in 1986, and the intriguing physics of cuprates superconductors continues to fascinate and challenge scientists from all over the world. ...
Cuprates and other high-temperature superconductors consist of two-dimensional layers that are crucial to their properties. The dynamics of the quantum spins in these layers lie at the heart of the mystery of the cuprates(1-7). In bulk cuprates such as La2 ...