What does S-palmitoylation do to membrane proteins?
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Gaining structural information on membrane proteins in their native lipid environment is a long-standing challenge in molecular biology. Instead, it is common to employ membrane mimetics, which has been shown to affect protein structure, dynamics, and func ...
Integral and peripheral membrane proteins account for one-third of the human proteome, and they are estimated to represent the target for over 50% of modern medicinal drugs. Despite their central role in medicine, the complex, heterogeneous and dynamic nat ...
S-acylation is one of the most frequent posttranslational modifications that regulates diverse cellular processes. Anwar and van der Goot discuss the complexity and disease implications of this highly regulated reversible lipidation. With a limited number ...
The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learni ...
ExbBD is part of a cytoplasmic membrane molecular motor driven by the proton-motive force. It belongs to the larger family of motors involved in nutriment import across the outer membrane of Gram-negative bacteria (ExbBD), flagellar rotation (MotAB) or lat ...
Membrane proteins are vital to life and major therapeutic targets. Yet, understanding how they function is limited by a lack of structural information. In biological cells, membrane proteins reside in lipidic membranes and typically experience different bu ...
The characterization of biological interfaces is widely recognized as one of the main challenges for modern biology. In particular, biological membranes are nowadays known to be an active environment that allows membrane proteins to perform their work and ...
Protein-mimetic materials are of great interest for biotechnology to grant protein-like properties to artificial systems. Additionally, these materials can be used to shed light on the fundamental properties of proteins in many environments. Nanoparticles, ...
Giant unilamellar lipid vesicles (GUVs) are widely used as model membrane systems and provide an excellent basis to construct artificial cells. To construct more sophisticated artificial cells, proteins-in particular membrane proteins-need to be incorporat ...
Solvent molecules interact intimately with proteins and can profoundly regulate their structure and function. However, accurately and efficiently modeling protein solvation effects at the molecular level has been challenging. Here, we present a method that ...