Reduced order modeling techniques for numerical homogenization methods applied to linear and nonlinear multiscale problems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
For studying spectral properties of a non-normal matrix A ∈ Cn×n, information about its spectrum σ(A) alone is usually not enough. Effects of perturbations on σ(A) can be studied by computing ε-pseudospectra, that is the level-sets of the resolvent norm fu ...
We study an elliptic equation with stochastic coefficient modeled as a lognormal random field. A perturbation approach is adopted, expanding the solution in Taylor series around the nominal value of the coefficient. The resulting recursive deterministic pr ...
The estimation of the lightning performance of a power distribution network is of great importance to design its protection system against lightning. An accurate evaluation of the number of lightning events that can create dangerous overvoltages requires a ...
Parallel-in-time integration is an often advocated approach for extracting parallelism in the solution of PDEs beyond what is possible using spacial domain decomposition tech- niques. Due to the comparatively low parallel efficiency of parallel-in-time int ...
Low axial resolution is a major limitation of fluorescence imaging modalities. We propose a methodology to achieve high isotropic resolution by reconstructing fluorescence volumes from observations of multiple particle replicates with different orientation ...
Many applied problems, like transport processes in porous media or ferromagnetism in composite materials, can be modeled by partial differential equations (PDEs) with heterogeneous coefficients that rapidly vary at small scales. To capture the effective be ...
A finite element heterogeneous multiscale method is proposed for solving the Stokes problem in porous media. The method is based on the coupling of an effective Darcy equation on a macroscopic mesh with unknown permeabilities recovered from micro finite el ...
Hyperbolic partial differential equations (PDEs) are mathematical models of wave phenomena, with applications in a wide range of scientific and engineering fields such as electromagnetic radiation, geosciences, fluid and solid mechanics, aeroacoustics, and ...
A fully discrete analysis of the finite element heterogeneous multiscale method (FE-HMM) for elliptic problems with N+1 well-separated scales is discussed. The FE-HMM is a numerical homogenization method that relies on a macroscopic scheme (macro FEM) for ...
In this work we introduce the Multi-Index Stochastic Collocation method (MISC) for computing statistics of the solution of a PDE with random data. MISC is a combination technique based on mixed differences of spatial approximations and quadratures over the ...