Lateral capillary forces ensuing from perturbed fluid menisci are pivotal to many important technologies, including capillary self-alignment and self-assembly of heterogeneous microsystems. This chapter presents a comprehensive study of the quasi-statics of lateral capillary forces arising from a constrained cylindrical fluid meniscus subjected to small lateral perturbations. After a contextual literature review, we describe a novel experimental apparatus designed to accurately characterize such a fundamental system. We then reproduce our experimental data on lateral meniscus forces and stiffnesses by means of both a novel analytical model and a finite element model. The agreement between our measurements and our models validate earlier reports and provides a solid foundation for the applications of lateral capillary forces to microsystems handling and assembly.
Alireza Karimi, Georg Fantner, Maartje Martina Cornelia Bastings, Adrian Pascal Nievergelt, Christoph Manuel Kammer, Eva Eugene Kurisinkal, Charlène Cécile Geneviève Brillard
Harm-Anton Klok, Corey Alfred Stevens, Kuljeet Kaur