Publication

Principles and Progress in Ultrafast Multidimensional Nuclear Magnetic Resonance

Mor-Miri Mishkovsky
2009
Journal paper
Abstract

Multidimensional acquisitions play a central role in the progress and applications of nuclear magnetic resonance (NMR) spectroscopy. Such experiments have been collected traditionally as an array of one-dimensional scans, with suitably incremented delay parameters that encode along independent temporal domains the nD spectral distribution being sought. During the past few years, an ultrafast approach to nD NMR has been introduced that is capable of delivering any type of multidimensional spectrum in a single transient. This method operates by departing from the canonical nD NMR scheme and by replacing its temporal encoding with a series of spatial manipulations derived from magnetic resonance imaging. The present survey introduces the main principles of this subsecond approach to spectroscopy, focusing on the applications that have hitherto been demonstrated for single-scan two-dimensional NMR in different areas of chemistry.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (19)
Nuclear magnetic resonance
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca.
Magnetic resonance imaging
Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body. MRI does not involve X-rays or the use of ionizing radiation, which distinguishes it from computed tomography (CT) and positron emission tomography (PET) scans.
Nuclear magnetic resonance spectroscopy
Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy.
Show more
Related publications (37)

Diamond-Based Nanoscale Quantum Relaxometry for Sensing Free Radical Production in Cells

Mayeul Sylvain Chipaux, Hoda Shirzad

Diamond magnetometry makes use of fluorescent defects in diamonds to convert magnetic resonance signals into fluorescence. Because optical photons can be detected much more sensitively, this technique currently holds several sensitivity world records for r ...
WILEY-V C H VERLAG GMBH2022

In-vitro and in-silico characterization of zein fiber incorporating cuminaldehyde

Niloufar Sharif

The zein solutions containing different concentrations of cuminaldehyde (5%, 10%, and 20%, w/w) were electrospun. The morphology and average diameter of fibers were evaluated by scanning electron microscopy and the optimized fiber (20% cuminaldehyde) was c ...
ELSEVIER2021

Mechanistic studies of DNP and applications of hyperpolarized probes to study renal physiology and metabolism

Alice Radaelli

Dissolution dynamic nuclear polarization (dDNP) is a powerful technique that enhances the magnetic resonance signal of nuclear spins by several orders of magnitude. DNP relies on the principle of cross-relaxation by electron spins driven out of equilibrium ...
EPFL2021
Show more
Related MOOCs (5)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.