**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# High order numerical approximation of the invariant measure of ergodic SDEs

Abstract

We introduce new sufficient conditions for a numerical method to approximate with high order of accuracy the invariant measure of an ergodic system of stochastic differential equations, independently of the weak order of accuracy of the method. We then present a systematic procedure based on the framework of modified differential equations for the construction of stochastic integrators that capture the invariant measure of a wide class of ergodic SDEs (Brownian and Langevin dynamics) with an accuracy independent of the weak order of the underlying method. Numerical experiments confirm our theoretical findings

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (6)

Differential equation

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

Stochastic differential equation

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations. SDEs have a random differential that is in the most basic case random white noise calculated as the derivative of a Brownian motion or more generally a semimartingale.

Partial differential equation

In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similar to how x is thought of as an unknown number to be solved for in an algebraic equation like x2 − 3x + 2 = 0. However, it is usually impossible to write down explicit formulas for solutions of partial differential equations.