Publication

Influence of 4-tert-Butylpyridine in DSCs with Co-II/III Redox Mediator

Abstract

The effect of TBP on Co(II/III) redox electrolyte was examined. Photocurrent of the device can be limited in electrolyte with high TBP concentration due to its viscous nature. The higher amount of TBP in electrolyte increases the viscosity of electrolyte and consequently slows down the diffusion of Co-III species. This is a unique observation for Co(II/III) electrolyte which is not observed in I-/I-3(-) electrolyte. An increase in TBP concentration from 0.1 to 0.5 M in a cobalt electrolyte containing 0.1 M Co(bpy)(3)(TFSI)(2) and 0.033 M Co(bpy)(3)(TFSI)(3) produced a 90 mV improvement in open-circuit potential (V-oc). Using electrochemical impedance spectroscopy (EIS), this enhancement could be attributed to the reduced interfacial recombination (33%) as well as a negative shift in the conduction 0 band level of TiO2 (67%). Although the influence of TBP in iodide/triiodide and cobalt-complex electrolytes is similar, the increase of viscosity at relatively high concentration of TBP in Co electrolyte should be taken into consideration in order to accomplish high efficiency DSCs based on Co-complex electrolytes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.